Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Abstract Optical‐resolution photoacoustic microscopy (OR‐PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR‐PAM, it is often necessary to make a trade‐off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual‐point‐based deconvolution algorithm for OR‐PAM (VP‐PAM). VP‐PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single‐line target. In addition, it has outperformed Richardson‐Lucy deconvolution with 15 iterations in both structural similarity index and peak signal‐to‐noise ratio on an OR‐PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep‐penetrating OR‐PAM system with compromised lateral resolution, VP‐PAM yielded enhanced resolution and contrast with better‐resolved microvessels.more » « less
- 
            Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
